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Mean field equation for the curvature-driven motion of bicontinuous, random interfaces
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A mean field theoretical expression for the interface velocity in the phase separating system of symmetric
binary mixtures is derived with use of the Green function method. It is assumed that the ramified random
bicontinuous interface is almost a minimal surface in the limit of a linear theory with respect to the mean
curvature. The formula shows a surface diffusion as well as the usual evaporation-condensation process in the
long range limit. Both processes depend on the characteristic scaling length \(¢) which is used as a cutoff or
a screening length of the bulk diffusion, and both obey the 71> evolution law. On the contrary, in the short range
limit, i.e., in the range smaller than A (¢) and greater than the interface thickness §, a cutoff-independent motion
compatible with the ¢° dispersion relation is obtained. The gradient dynamics related to the present dynamics
is discussed qualitatively with use of a localized dissipation function as the definition of the inner product.

PACS number(s): 64.60.Cn, 64.75.+g, 68.10.Jy, 68.35.—p

I. INTRODUCTION

The problem of the phase ordering process associated
with the first order phase transition has a long history [1,2],
but is a still challenging nonlinear problem. Especially, the
interface dynamics has become interesting not only to physi-
cists but also to mathematicians [3]. However, though many
remarkable phenomena, e.g., the time-dependent scaling law,
have been investigated in detail, the interface evolution equa-
tion itself of the order parameter conserving system has not
been well established in a sense, as is discussed below.

Let us consider the late stage of the ordering process of
quenched, symmetric binary mixtures described by the
Cahn-Hilliard equation [4],

° 2
Es(r,t)=LV u(r,t), (1)

where
p(r,0)=—3s(r,0)[1=s(r,1)*]1= £V?3s(r,1) (2)

is the chemical potential and £ is a smallness parameter
which is to be related with the interface thickness soon. Here
we consider the case of a constant transport coefficient L.
Then the late stage evolution is described by a bulk diffusion
limited interface motion, i.e., the evaporation-condensation
process [5]: Let 8s be the deviation of the order parameter
s from the so-called kink solution,

sK(u)Ztanh( zu—g), (3)

which is the steady solution of Egs. (1) and (2) in the case of
a planar interface where u is the normal coordinate perpen-
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dicular to it and thus & corresponds to the interface thickness.
When the geometrical characteristic length X\, e.g., the rep-
resentative radius of curvature of the interface S, satisfies
N> €, the deviation Js can be assumed to be small and by
linearizing Egs. (1) and (2) we obtain a diffusion equation,

d
E&s(r,t)=LV253(r,t), 4)

with the Gibbs-Thomson boundary condition
Ss | s= % §H > (5 )

where H is the mean curvature of S defined by H=—V -n
with the unit normal vector n=Vs/|Vsg| at the interface
(u=0). Note that in the present notations the surface tension
is given by y=2¢/3. The interface normal velocity is given
by

L
vn:_i[n'vag]S’ (6)

where [ ... ]s denotes the flux gap across the interface S.
Thus the late stage of the evolution is described as a Stefan
problem consisting of Egs. (4)—(6). In the present case, how-
ever, the interface velocity v,~Lds/\ is very small com-
pared with the representative diffusion velocity
vp~L(ds/\)/ és~(N/€)v,, and a quasistatic approxima-
tion

V285=0 (7
is applicable. It should be noted here that in this stage of

evolution the order parameter conservation is expressed as
the volume conservation, i.e.,

§ v,(a) da=0, (8)
s
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where da is the surface element of the interface S, and S is
regarded as a closed surface in the meaning as will be re-
marked in Sec. III. One more conserved quantity proper to
this stage is a “dipole” moment [6] which is a measure of
uniformity of the geometric pattern defined by

p=f r{s(r)—s]dV, 9)

where s is the bulk average of the order parameter s. With
use of Egs. (6) and (7) it can be shown that

dp

E=2s0 ﬁg rv,(a)da=0, (10)

where 25 is the order parameter gap (sy=1 here). This fact
shows that, though the characteristic length \(f) grows as
M(1)~¢"3 in this stage as is generally shown using a kind of
dimension analysis [7], the dipole moment defined by Eq. (9)
remains constant and is not scaled. That is, the uniformity of
the system is preserved in the scaling stage whenever the
initial state is uniform [6].

This simplified scheme was used by Mullins and Sekerka
[8] to investigate the instability in solidification. Kawasaki
and Ohta [7] derived an integral equation form which is just
the same as the equation for the equivalent simple layer for
the above Dirichlet problem in the potential theory. A sys-
tematic derivation with an asymptotic expansion was given
by Pego [9] and recently by Oono [10] with use of the renor-
malization group method. It should be noted that Kawasaki
and Ohta’s derivation is essentially based on the Onsager
variational principle [11] by rewriting the free energy and the
dissipation function for the diffusion process in the interfa-
cial forms. Thus, speaking in the currently familiar language,
the evaporation-condensation dynamics is the gradient dy-
namics [3] with use of the interface version of the positive
definite dissipation function as the definition of the corre-
sponding inner product,

2 2
S b 4 Gotar @

Xv(a)w(a')da da’, (11)

d(v,w)=

where Gy(x,x’) is the Green function for the three dimen-
sional Laplacian V2 defined by

1

Go(x,x")= Talx—x]"

(12)

If the Green function for the surface Laplacian V2 was used
instead, a surface diffusion motion would be obtained [3].
Although the above scheme has been well established and
investigated exhaustively, we have not found yet an explicit
formula for the interface velocity v, itself, like the Allen-
Cahn formula [12] for the order parameter nonconserving
system. We have no general solution for the Dirichlet prob-
lem in an explicit form in the potential theory. That is, none
of explicit solutions can be found unless the actual geometry
of the surface is incorporated into the theory anyway, e.g.,
like the image method in electrostatics. Successful examples
are seen in the early works by Todes [13], Lifshitz and Slyo-

zov [14], and Wagner [15] for the spherical droplet system of
very small volume fraction ¢<<1 and by Mullins and
Sekerka [8] for the interface of simple geometry. The diffi-
culty in the system prepared with the nearly critical quench
(¢$~0.5) is the geometrical complexity of its spatial pattern,
i.e., a ramified bicontinuous phase or a random sponge struc-
ture observed by simulations [16—18]. Recently a direct pic-
ture of this three dimensional structure was obtained experi-
mentally by using the position-sensitive atomic probe
(PoSAP) on Fe-Cr alloy [19].

The author took advantage of the following properties of
this structure into a phenomenological theory [20]: (i) The
spatial structure of it is mesoscopically uniform because of
the conservation law, Eq. (10), and has a well defined char-
acteristic length scale \(z), which obeys the !> growth law.
(ii) The ramified structure causes localization or screening of
the diffusion process like the electrostatic shielding phenom-
ena. The screening length must be of order of A(¢). (iii) The
mean curvature of the interface S is small and slowly varying
everywhere.

Using the method of the Green function,

V2G(x,x9)=86(x—%x;) and G=0 on S, (13)
a cutoff length N was introduced according to the assumption
(ii) to

0ina(X:x0)=—n-VG(X,Xy), (14)

which is the surface charge induced on the grounded conduc-
tor S by a negative unit charge — 1 located at x,. Hereafter
the uppercase X is used to denote the points on S and the
lowercase x those in the bulk. Based on the above assump-
tions an explicit expression for v, was derived in an expan-
sion form with respect to the surface gradient operator Vg on
the mean curvature H up to the second order. However, this
expansion is incomplete, because the correlation length of
the curvature H must be comparable to the representative
geometrical length \. Besides, there exists ambiguity in the
range of validity of the adopted form of the charge density
O, Which was estimated from the planar conductor prob-
lem. The purpose of the present paper is to improve this
phenomenology by replacing the assumption (iii) by the fol-
lowing: (iii’) The mean curvature is small everywhere and
the interface S can be regarded as an almost minimal surface
when ¢=0.5.
This means that

H?<|K|~\2, (15)

everywhere. Here K is the Gauss curvature which is negative
almost everywhere. Since the mean curvature H is included
already in the boundary condition, Eq. (5), in our problem,
we can regard the interface as a minimal surface (H=0)
within the linear theory in H.

In Sec. II the potential theory for the minimal surface is
surveyed and a good foundation for 0,4 used in the previous
papers [20] is obtained. With use of this o,y a mean field
theoretical expression for the interface velocity v, and the
corresponding u field [21,22] or the contour equation [23]
are derived in Sec. III. The relation with the gradient dynam-
ics is discussed in Sec. IV. Prescaling behavior, which as-
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sures the geometrical assumptions enumerated above in the
scaling stage and a geometrical instability which is likely a
growing mechanism of the pattern, are also discussed there.

II. GREEN FUNCTION FOR MINIMAL SURFACES

Let us survey the potential problem for the minimal sur-
face in this section. We have the Laplace equation

V2iy(x)=0, (16)
with a Dirichlet-type boundary condition,
= (X)

In terms of the induced charge density defined by Eq. (14) a
formal solution is given by

on S. 17)

P(x)= % H(X) o ine(X;x)da. (18)

Note that in the present problem we need only the gradient of
the potential at the surface S in Eq. (6). [Of course the Di-
richlet problem would be completely solved, if n- V ¢/(X) on
S would be found.] This means that we need the Green func-
tion G defined by Eq. (13) only in the very vicinity of §, i.e.,
in the limit z—0 when we set x=X,+ zn.

Let (u,,u,,u3) be an orthogonal curvilinear system and
define the linear metric by

g:=|ox/du|=1/|Vu,|. (19)

Let u; be the normal coordinate perpendicular to S and
g3=1, and (u;,u,) be the orthogonal local coordinates of
S which is not necessarily a minimal surface for the time
being. In this coordinate system the Laplacian is written as

1 d 82 ad

d g, o 3* . J
01/!2 82 o”uz z?u% 8“3’
(20)

2__
€ &ul 81 (9141

where e=g;g,, and the mean curvature H is defined by
H=-V-n=———. (21)

It is always possible to find a conformal map for a local
vicinity of any smooth surface into that of a plane because
we can set g;=g,=1 locally. The range of its validity is
given by

IVG|/G~1/r>|H|. (22)

However, this condition on the transverse distance r imposes
no restriction on the minimal surface where H=0 every-
where: The condition (22) becomes

Ur>|usK]|, (23)

because the mean curvature of a surface uz=u (a parallel
surface of S [24]) is given by
H(0)—2uK(0)
—uH(0)+u’K(0)’

H(u)=1 24)
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where H(0)=0. As is mentioned above, we need the limit
u3;—0. Therefore, we have practically no restriction on r.
Using Egs. (21) and (24) one finds

_ €(0) 55
W)= T2 H0) + i K(0) @)
Then we can assume
H(uy,uy,u3)=0 and €(u,uy,uz)=e(u;,u,,0)
(26)

in the very vicinity of the minimal surface so long as
|us|<1/y|K(0)|. Further, we can define an isometric or-
thogonal system g, =g, (to a certain extent) globally on the
minimal surface by choosing the pair of parameters of lines
of curvature as (u,,u,) [24]. This is approximately valid in
the vicinity of the minimal surface again. Thus Eq. (13) for
the Green function G for the minimal surface S is well ap-
proximated by

PP 7
W—F ;972-+ e(u, ,MQ)EIIE' G=8(uy)d(uy) S(uz—z),
1 2 3

27

where the source strength is not changed by choosing a
frame €(0,0)=1, i.e., a 3d-isometric system at the source
point (0,0,z). This is the Poisson equation for an anisotropic
medium with a diagonal dielectric tensor. In this medium the
refraction of flux lines occurs only in u5 direction. If we
introduce a new distance by

r'(r,p)= fo €(p cosp,p sing)dp, (28)

where (r,¢) are the polar coordinates in the (u;,u,) plane,
all flux lines diverging from (0,0,z) are mapped into straight
lines. It should be noted, however, that this dilation in the
(uy,u,) plane is not conformal. The new plane (u;,uj) is
solely a reference frame for the geometrical computation of
the solid angle spreading from the source point (0,0,z). The
number of flux lines (i.e., the solid angle) which start from
(0,0,z) where e=1 and are directed to a surface element
dujdu} located by distance r’ from (0,0) is given by

zdu,du;
- IR (29)
Then multiplying by a factor of 2 due to the corresponding
image charge we get

O'indda:—&—u:;da:mduidué, (30)

where dujdu}= €?du,duy= € da is used. Thus the form of
the induced charge density assumed in the previous work
[20] is established for a new plane. The range of validity of
it is not restricted within the neighborhood of the point
(0,0) so long as the parametric plane (u;,u,) originated at
(0,0) covers the whole 2d plane RZ. However, this is not
always true. Especially in such a ramified bicontinuous phase
as considered here, the mapping may cover only a restricted
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region of R? depending on the reference point (0,0). This
restriction will be used as a cutoff in the next section. An-
other difficulty is that there remain unmapped regions on S
also and the induced charge on these remaining parts induces
additional charges and deforms Eq. (30). This indirect effect
is assumed to be very small from a viewpoint of the electro-
static shielding and will be neglected.

Although the form of the induced charge density Eq. (30)
is derived strictly based on the assumption of a minimal
surface when ¢=0.5, the result itself may be approximately
applicable so long as the inequality Eq. (15) is valid. Hence-
forth let us extend it to nearly symmetric systems
(¢$~0.5). Of course, if we restrict the range of its applica-
tion within a sufficiently narrow neighborhood of the refer-
ence point (0,0), it must be always a good approximation.
The important condition we need here, however, is that the
range of its validity should be comparable to the representa-
tive length N in order to apply the mean field approximation
to the outer range (>A\) in the next section.

III. MEAN FIELD THEORY OF INTERFACE MOTION

First, note that we should be careful in considering the
potential problem with an infinitely extended boundary S
such as the bicontinuous phase assumed in the present prob-
lem and also the outer region of an infinitely distributed
sphere system. Precisely speaking on physically uniform sys-
tems only, we have a compatibility condition on the surface
average of the boundary value,

Ys=0, (31)

instead of the usual boundary condition limy_,.##(X)=0 in
order to use Green’s theorem. The infinitely extended inter-
face S can be treated as a closed surface in this sense. Note
that all of the useful formulas for the potential problem, e.g.,
the induced charge method used in Sec. II, the equivalent
simple layer or double layer methods and so on, are derived
from Green’s theorem. Therefore, if we wish to employ a
potential theoretical approach to the present problem, the
boundary condition (5) should be modified to

Y(X)=¢gH(X)—H]/3, (32)

H= SES H(X)da / i da. (33)

Let us apply the result obtained in Sec. II to the formula

where

Y(X+zn) = jg P(X+ X))o X+ X, ;X+zn)da,,
s
(34)

to calculate

n-Vy(X)=1lim

z—0

W(X+Zl;)* lﬁ(X). (35)

As is assumed in the previous work [20], in the present
random sponge phase the electrostatic induction by a point

charge — 1 must be well localized within the effective cage
of radius ~\ due to the electrostatic shielding because of the
ramified shape of the conductor surface S. In fact, the induc-
tion must be negligibly small at least in the geometrically
shaded region. The range of the parametric mapping re-
marked in Sec. II, if exists, may be the same order as it. As
we have no definite definition for this characteristic length
yet, let us introduce a cutoff length X which is uniform mea-
sured in the (u;,u}) plane, and divide the integral in Eq.
(34) into two parts as

3€ = f (local part)+ f (nonlocal part).  (36)
s Jan >\

As is examined afterward the nonlocal part does not affect
the interface velocity because of the symmetry after random
averaging. In the local part let us use the expression (30) for
Oing» that is, let us neglect the indirect induction from the
outer region (>\) because the total charge induced there is
supposed to be very small [~O(z/\)]. Then the Taylor ex-
pansion for $(X+X,) in the (u;,u,) plane gives

YXtam=| 1= SV X, 67)

where V is a function defined in terms of the Bessel func-
tions by

oo

1
V(gH=-2 (—2;‘_—1—)22—,,(;1‘!‘)—2(—Q2)"

n=0
Qo
=Jo(Q)*QJ1(Q)+Qf0 Jo(q)dgq. (38)

Note that in the Taylor expansion the operator
(9/duy)*+(dldu})* is replaced by the surface Laplacian
V3 because we used the frame €(0,0)=1 in Sec. II. With the
aid of Egs. (6), (32), and (35), Eq. (37) yields the final result,

L¢

vn(X): - 3}\(1)

V(=N(0)?VHIH(X)—H], (39)

where the cutoff length A is regarded as a time-dependent
parameter which should be determined self-consistently by
Eq. (39) itself. Alternatively, we may set A (z)=c¢'/> with an
adjustable constant ¢ conveniently in so far as we know that
it obeys the ¢! evolution law.
The function V(Q?) is expanded for small Q as
QZ
V(Q2)=1+T+~--, (40)

which was obtained by the author in Ref. [20]. The first term
denotes directly the evaporation-condensation process
(~[H—H]) due to the fluctuation of the mean curvature
around its average value. The second term may be inter-
preted to be a type of surface diffusion (~ — V§H ) due to the
spatial variation of the curvature. Both processes depend on
the parameter A\ (z) and the interface motions caused by them
obey the 7!/ law. Then this surface diffusion differs from that
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obtained by inhibiting the bulk diffusion [3]. The interface
motion associated with the latter obeys the ¢'/* law.
In contrast for large Q we have

V(Q*)=0, (41)

which is a good approximation practically for Q>2. Owing
to A(#) in the denominator in Eq. (39) the interface velocity
v,=(L&/3)|V4|H is independent of the cutoff length \(z).
This form was first used by Ohta and Nozaki [25] and de-
rived by Hayakawa and Koga [26] as a limit of more general
results for long range interactions assuming an almost planar
interface. Since H~ g%, where g is the wave number corre-
sponding to Q/\, this behavior is compatible with the q3
dispersion relation of the surface mode derived by Jasnow
and Zia [27] and by Shinozaki and Oono [28]. Of course,
g should be sufficiently smaller than £ ! as is limited in the
present theory.

30X X+zn)=—(n;- Vl)[ —Go(X;,X+zn)+

=(n;-V,)

Define a unit dipole potential at x’ caused by a dipole n
located at X by

n-(x’' —X)

. —
Folx'sX) = g

=n-VGy(X,x"). (44)

Then by substituting o4 in Eq. (43) iteratively, the flux gap
including the effect of the outer region is finally given by

2 TI(X)+¥ (X
[n-Vyls=- ;w—xzvé)( W(X)— —”—2—“)
+n- V[V (X)-¥, (X)], (45)
where
\I’f(x)=iJ>)\F0(X;X1)TS(X1)da1 (46)

are double layer potentials and their sources 7, and 7, are
given by

I (X =¢(X)* L)\Fo(X;Xl)Tf(Xl)dal )

Note that this integral equation is just the same as that for the
equivalent double layer for the Dirichlet problem in the po-
tential theory, if the restriction (>\) in the integral is re-
placed by a principal value integral excluding the point
X;=X. Since this definition of 75 is in a sense an averaging

Now let us consider the nonlocal part. The induced charge
density obeys the following integral equation by definition
(G=0 on §):

%Uind(xl;X+Zn):_(n1'vl)('—GO(X17X+Zn)
+ § Go(X;,X+X")
s
Xa'ind(X+X';X+zn)da’), (42)

where V| denotes d/d X;. Let X; be a point in the outer
region (>\) and divide the integral in the right-hand side
into the inner part [_, and the outer part [, . Using the
direct induction form, Eq. (30), as o,q in <), one obtains

l—;V(—)\ZV§))GO(X1,X)+J>)\"'}

1
z((n.V)+XV(—)\zvg))Go(Xl,X)—j>>\GO(X1,X+X’)aind(X+X’;X+zn)da’ . (43)

over the random variable ¥(X)~[H(X)—H] in the outer
region, the symmetry consideration allows us to assume the
double layer potentials ¥\ and ¥, to be

—_Z >~+l (1+_Z_)
\/-m “—2(7)\> A/

(48)

Wi (x)=* %(7')\)( 1+

where we put x=X+2zn and (7, )~ (75 )~(7,), and the ap-
proximations are based on the calculation of the solid angle
of the “window” part (<\) and are solely guidelines to
estimate z and N dependence. Hence the outer part has no
effect on the interface equation at z=0, but it must be taken
into account in considering the deviation of the interface (z
#0). That is, if we introduce the so-called u-field [21,22]
defined by

s(r,t)=sgn(u(r,1)), (49)

its evolution equation, or the contour equation [23], is given
by

1 Ju L¢

o L NV (v v —KZ)
[Vul 9t 3N(2) =20 S)W s Vo

(50)

where the definition of the mean curvature,
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H=-V.n= Vi Vu, (51)

1
|Vul
is used. The dimensionless constant « is defined by putting

£’

(W==3xp <9 (52)
i.e., by assuming an effectively concave mean field environ-
ment and the scaling property H~\(z) !. Thus the long
range coupling by the diffusion process yields the time-
dependent unstable range of small wave numbers, which is
analogous to the Mullins-Sekerka instability in solidification
[8] and is a well-known remarkable feature of the spinodal
decomposition. This instability was attributed to V2 in
V(—A2V3%) by the present author [20], but the argument is
incorrect. The mean field theoretical treatment on it em-
ployed here is just equivalent to those used by Ohta and
Nozaki [25] and Hayakawa and Koga [26] for nearly planar
interfaces.

If we assume a Gaussian random field for {u(r)}, we can
calculate the correlation function g(r,7)=(s(0)s(r)), and
the corresponding structure function S(q,?) together with a
kind of random phase approximation for V§ [21]. The struc-
ture function has been calculated by Ohta and Nozaki for
V(Q»)=Q [25] and by the present author for
V(Q?) =1+ Q?/4 [20]. An evolution equation similar to the
latter is obtained by Yeung, Oono, and Shinozaki [29] based
on the scaling hypothesis within the Gaussian approxima-
tion. However, as is clearly demonstrated by them, the
Gaussian approximation itself includes a severe conflict with
the order parameter conservation, i.e., in the small wave
number limit limg_,(5(q,?). A post-Gaussian correction on
this fault is proposed by Mazenko [30]. Further, in the finite
wave number region an apparent discrepancy of the position
of the second peak in the Porod plot for the structure func-
tion is found between the theory [20,25] and the simulation
[18,31]. Even if we use the present evolution equation (50),
little improvement is found with respect to this fault. Thus a
breakthrough beyond the Gaussian closure is desired to re-
produce the observables g(r,f) and S(q,#) more faithfully
for finite wave numbers q as well as the limit g—0.

IV. DISCUSSION

The mean field theoretical expression for the interface
evolution equation in the random bicontinuous phase is de-
rived by assuming the screening effect of the diffusion pro-
cess on the analogy of the electrostatic shielding. It is analo-
gous to the screening length for the droplet-droplet
correlation introduced by Tokuyama and Kawasaki [32] to
extend the Lifshitz-Slyozov theory to the system of finite
volume fraction ¢. So far a simple cutoff procedure em-
ployed here seems to be the best to incorporate the screening
effect for the random sponge structure of ¢~0.5, because
other phenomenological functions, e.g., the Debye-Hickel-
type exponential screening adopted in the droplet system
[33,34], never yield the behavior V(Q?)=Q which coincides
with the ¢ dispersion relation.

The random sponge structure observed in the simulations
[16,18] resembles the periodic minimal surface [35] so far as
we are looking at it locally. Then it is assumed here that the
interface is almost minimal surface within the linear theory
with respect to the mean curvature. However, this nature
(K< 0 almost everywhere) itself cannot be deduced from the
evolution equation at this stage. The equation obtained here
is merely compatible with it. The origin of it should be at-
tributed to the initial phase, or more exactly, to the pre-
scaling behavior. In this context it should be noted that, when
the characteristic length A is not so much larger than the
interface thickness &, the interface free energy AF has a
correction term of order &2, i.e.,

AF= y( 355 da+ BE i K(a)da), (53)

for d=3, [36] where vy is the surface tension and B is a
positive constant dependent on the interface profile, e.g.,
B=1.289... for Eq. (3). Then it is concluded that the
sponge structure (K<<0 almost everywhere) must be pre-
ferred in the prescaling stage. Thus the prescaling dynamics
seems to be inevitable in order to reveal the scaling structure.

Another problem associated with this structure is how it
grows. The characteristic length \(z) cannot grow (as ¢'3)
unless any topological jump occurs. Let us discuss here one
likely mechanism, that is, the catenoid instability. As is well
known, catenoid and circular film are only two types of re-
volving minimal surface [35]. The stability of the catenoid
depends on its aspect ratio. When the ratio [height]/[minimal
radius] is greater than 1.199 ..., it becomes unstable (not
minimal though H=0). With use of the present dynamics it
can be shown that the dynamical stability coincides with this
geometrical stability within a linear analysis. Suppose a
catenoidlike part in the sponge structure happens to be drawn
along its axial direction by some environmental deformation.
It suddenly begins to diminish when its aspect ratio reaches
the above critical value, and disappears in a short time, i.e.,
is transformed into another minimal surface, a pair of circu-
lar films. Then there occurs a topological jump.

Lastly, let us discuss the possibility of the gradient dy-
namics [3] related to the present dynamics. As is surveyed in
Sec. I, the late stage dynamics of the Cahn-Hilliard equation
with a constant transport coefficient L, i.e., the evaporation-
condensation dynamics, is interpreted as a gradient dynamics
with use of the interface version of the Onsager dissipation
function as the definition of the inner product. With use of
Eq. (11) the interface velocity is given by

yL

R ETNE

fﬁs ro(x,x')[H(X)—ﬁ]da’, (54)

where y=2¢&/3 and I'((X,X’) is the inverse of the Green
function Gy(X,X') on the interface S and is not the 3d
Laplacian [7]. The H term in this case results from the
Lagrange multiplier term for the order parameter conserva-
tion constraint Eq. (8). However, this equation is merely for-
mal and physically useless, unless the actual geometry of the
given problem is inevitably taken into account. If it is re-
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membered that the inner product, Eq. (11), is the Coulomb
interaction energy of the surface charges in terms of electro-
static language, we may approximate it by a localized form
with use of some kind of an effective screened potential
G(X,X') corresponding to the approximation of the present
work. Then its inverse f(X,X’ ) also becomes a similarly
localized one, though it may not have such a sharp cutoff as
introduced in Sec. III. Thus it is expected that a more rea-
sonable derivation of the interface evolution equation for the
random sponge phase will be obtained in this course.
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